Engineer the Tools of Scientific Discovery


In the century ahead, engineers will continue to be partners with scientists in the great quest for understanding many unanswered questions of nature.

In the popular mind, scientists and engineers have distinct job descriptions. Scientists explore, experiment, and discover; engineers create, design, and build.

But in truth, the distinction is blurry, and engineers participate in the scientific process of discovery in many ways. Grand experiments and missions of exploration always need engineering expertise to design the tools, instruments, and systems that make it possible to acquire new knowledge about the physical and biological worlds.

In the century ahead, engineers will continue to be partners with scientists in the great quest for understanding many unanswered questions of nature.


How will engineering impact biological research???

Biologists are always seeking, for instance, better tools for imaging the body and the brain. Many mysteries also remain in the catalog of human genes involving exactly how genes work in processes of activation and inhibition. Scientists still have much to learn about the relationship of genes and disease, as well as the possible role of large sections of our DNA that seem to be junk with no function, leftover from evolution.

To explore such realms, biologists will depend on engineering help — perhaps in the form of new kinds of microscopes, or new biochemical methods of probing the body’s cellular and molecular machinations. New mathematical and computing methods, incorporated into the emerging discipline of “systems biology,” may show the way to better treatments of disease and better understanding of 
healthy life. Perhaps even more intriguing, the bio-engineering discipline known as “synthetic biology” may enable the design of entirely novel biological chemicals and systems that could prove useful in applications ranging from fuels to medicines to environmental cleanup and more.

How will engineering help us explore the universe?

In its profundity, only one question compares with that of consciousness — whether the universe is host to forms of life anywhere else than on Earth. Systems capable of probing the cosmos for evidence surely represent one of engineering’s grandest challenges.

Even apart from the question of extraterrestrial life, the exploration of space poses a considerable challenge. Long-distance human space flight faces numerous obstacles, from the danger of radiation to the need to supply sustainable sources of food, water, and oxygen. Engineering expertise will be critical to overcoming those obstacles, and many efforts to expand that expertise are underway.
One line of research, for example, envisions a set of connected bioreactors populated by carefully chosen microbes. Metabolism by the microbes could convert human wastes (and in some cases the microbes’ own wastes) into the resources needed to support long-term travel through space.

But the allure of space extends well beyond the desire to seek novel life and explore new phenomena. Space represents the mystery of existence itself. The universe’s size and age exceeds most people’s comprehension. Many of its less obvious features have been fathomed by the methods and tools of modern astrophysics, revealing that, amazingly, our entire universe seems to have arisen in an 
initial fireball from an infinitely small point.  Matter and energy coalesced into such structures as galaxies, stars, and planets supporting the even more intricate atomic arrangements making up minerals, plants, and animals.

All things considered, the frontiers of nature represent the grandest of challenges, for engineers, scientists, and society itself. Engineering’s success in finding answers to nature’s mysteries will not only advance the understanding of life and the cosmos, but also provide engineers with fantastic new prospects to apply in enterprises that enhance the joy of living and the vitality of human civilization.